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An e�cient algorithm with proven numerical stability is derived for
computation of eigenvalue and eigenvector derivatives of damped vibratory
systems with multiple eigenvalues. In the proposed method, adjacent
eigenvectors and orthonormal conditions are used to compose an algebraic
equation whose order is (n�m)6(n�m), where n is the number of co-
ordinates and m the number of multiplicity of a multiple natural frequency.
The mode shape derivatives of the damped systems can be obtained by solving
the algebraic equation. The method can be consistently applied to both
structural systems with structural design parameters and mechanical systems
with lumped design parameters. As an example of a structural system to
demonstrate the theory of the proposed method and its possibilities in the case
of multiple eigenvalues, the ®nite element model of the cantilever beam is
considered, and also a 5-DOF mechanical system in the case of a non-
proportionally damped system. The design parameter of the cantilever beam is
its height, and that of the 5-DOF mechanical system is a spring.

# 1999 Academic Press

1. INTRODUCTION

The eigenpair sensitivities of structural and mechanical systems with multiple
natural frequencies have been a focus of recent interest. In typical structural or
mechanical systems, there are many multiple or nearly equal natural frequencies,
due to their structural symmetries or certain reasons. In this case, since
eigenspace spanned by the mode shapes corresponding to the multiple natural
frequencies is degenerate, any linear combination of mode shapes can be a mode
shape. A number of papers [1±8] have been presented to ®nd the mode shape
derivatives in the case of multiple natural frequencies. For the mode shape
derivative to be found, the adjacent mode shapes which lie ``adjacent'' to the m
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(multiplicity of multiple natural frequency) distinct mode shapes appearing when
a design parameter varies must be calculated ®rst. To do so, the approximate
mode shapes could be varied continuously by varying the design parameter. For
the real symmetric case, a generalization of Nelson's method [9] was obtained by
Ojalvo [1] and amended by Mills-Curren [2] and Dailey [3]. Dailey's method is
an exact analytical method for calculating mode shape derivatives. This method
only requires knowledge of the eigenpair with multiple eigenvalues, however, the
method is lengthy and complicated for ®nding mode shape derivatives and
clumsy for programming. Dailey's method is extremely complicated for
calculating the sensitivity of eigenvectors of multiple eigenvalues in the case of
the damped systems.
In this paper the algebraic method for calculating the natural frequencies and

the corresponding mode shapes proposed by Lee and Jung [7, 8] is extended to
the proportionally and non-proportionally damped systems with multiple natural
frequencies. In the case of multiple eigenvalues as well as distinct ones, the
proposed method can ®nd the mode shape derivatives by solving the algebraic
equation with symmetric coef®cient matrix added side conditions. The ortho-
normal condition and a set of adjacent eigenvectors can be used in the alge-
braic equation as side conditions.
The second section of this paper presents the proposed sensitivity analysis

method of damped systems with multiple natural frequencies. The third section
presents numerical stability of the proposed method, and the next section
numerical examples.

2. SENSITIVITY ANALYSIS OF A DAMPED SYSTEM WITH MULTIPLE
NATURAL FREQUENCIES

When a natural frequency has multiplicity m and a design parameter is
perturbed, the corresponding mode shapes may split into as many as m distinct
mode shapes. For derivatives of the mode shapes to be responsible, the
mode shapes must be laid adjacent to the m distinct mode shapes that appear
when a design parameter varies. Otherwise, the mode shapes would jump
discontinuously with a varying design parameter. Here the derivatives of these
adjacent mode shapes are sought.
The eigenvalue problem of a damped system can be expressed as

�l2M� lC� K�f � 0, �1�
where M, C and K are the matrices of mass, damping and stiffness, respectively,
and these are order n symmetric matrices. M is positive de®nite and K positive
de®nite or semi-positive de®nite. The ®rst step in ®nding derivatives of mode
shapes of multiple eigenvalues is to ®nd corresponding adjacent mode shapes.
Suppose that all eigenpairs are known and multiplicity of the eigenvalue lm is m.
De®ne the following eigenvalue problem where FFFm is the matrix of eigenvectors
corresponded to the multiple eigenvalue, hence, its order (n6m).

MFFFmL2
m � CFFFmLm � KFFFm � 0, �2�
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where

Lm � lmIm and FFFm � �fi�1fi�2 . . .fi�m�: �3�
Im is the identity matrix of order m and lm is the eigenvalue of multiplicity m for
the eigenspace spanned by the columns of FFFm . As noted in Part I, the
orthonormal condition for the (i� 1)th eigenvector is as follows:

fT
i�1�2li�1M� C�fi�1 � 1: �4�

Since the multiplicity is m, the orthonormal condition for the matrix FFFm is as
follows:

FFFT
m�2lmM� C�FFFm � Im: �5�

Adjacent eigenvectors can be expressed in terms of FFFm by an orthogonal
transformation such as

X � FFFmT, �6�
where T is an orthonormal transformation matrix and its order m;

TTT � Im: �7�
The columns of X are the adjacent eigenvectors for which a derivative can be
de®ned. It is natural that the adjacent eigenvectors satisfy the orthonormal
condition too:

XT�2lmM� C�X � TTFFFT
m�2lmM� C�FFFmT � TTT � Im: �8�

The next procedure is to ®nd T and then to ®nd X and @Lm/@p. If design
parameter p varies, @Lm/@p is expressed as

@LLLm

@p
� diag

@li�1
@p

,
@li�2
@p

, . . . ,
@li�m
@p

� �
: �9�

Consider another eigenvalue problem to ®nd X and @Lm/@p.

MXLLL2
m � CXLLLm � KX � 0, �10�

where the order of adjacent eigenvector matrix X is (n6m) and the order of
eigenvalue matrix LLLm is (m6m). Differentiating the above eigenvalue problem
with respect to the design parameter p, and rearranging yields

�l2mM� lmC� K� @X
@p
� ÿ�2lmM� C�X @LLLm

@p
ÿ l2m

@M

@p
� lm

@C

@p
� @K
@p

� �
X: �11�

Premultiplying each side of equation (11) by FFFT
m and substituting X�FFFmT into it

gives a new eigenvalue problem such as

DT � ET
@LLLm

@p
, �12�
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where

D � FFFT
m l2m

@M

@p
� lm

@C

@p
� @K
@p

� �
FFFm and E � ÿFFFT

m�2lmM� C�FFFm � ÿIm:

�13�

One can obtain the eigenvalue derivative @LLLm/@p and orthogonal transformation
matrix T by solving equation (12), and then the adjacent eigenvectors by relation
X�FFFmT. A similar procedure for ®nding the adjacent eigenvectors in the case of
the undamped system is derived by Chen and Pan [10].
The proposed method starts with the equations of the derivative of the

eigenvalue problem composed of the system matrices and the adjacent
eigenvectors, equation (11), and the orthonormal condition, equation (8).
Differentiating equation (8) with respect to the design parameter gives

XT�2lmM� C� @X
@p
� ÿXT @M

@p
XLLLm ÿ XTMX

@LLLm

@p
ÿ 1

2
XT @C

@p
X: �14�

One can write the following single matrix equation by combining equations (11)
and (14).

l2mM� lmC� K �2lmM� C�X
XT�2lmM� C� 0

" # @X

@p

0

24 35

�
ÿ�2lmM� C�X @LLLm

@p
ÿ l2m

@M

@p
� lm

@C

@p
� @K
@p

� �
X

ÿXT @M

@p
XLLLm ÿ XTMX

@LLLm

@p
ÿ 1

2
XT @C

@p
X

26664
37775, �15�

where the order of coef®cient matrix on the left side of equation (15) is
(n�m)6(n�m) and the matrix on the right side is (n�m)6m . The derivatives
@X/@p can be found by solving equation (15). The coef®cient matrix can be
decomposed into upper and lower triangular forms [11] and then a forward
and backward substitution scheme may be used to evaluate the components
of @X/@p.
Note that the proposed method has the desirable properties of preserving the

structure of the system matrices, and of requiring knowledge of only multiple
eigenpairs. Note also that the proposed method needs the ®rst order derivatives
of the mass, damping and stiffness matrices, whereas Dailey's method which
®nds the exact solutions needs both the ®rst and second derivatives. The
numerical stability of the proposed algorithm for multiple eigenvalues will be
proved in section 3. The procedures for the sensitivity analysis method in the
case of multiple eigenvalues are summarized in Table 1.
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3. NUMERICAL STABILITY OF THE PROPOSED METHOD

Identifying the nonsingularity of the coef®cient matrix A* of order (n�m) in
equations (15) and (16) may be used to prove the numerical stability of the
proposed method in the case of multiple eigenvalues.

A� � l2mM� lmC� K �2lmM� C�X
XT�2lmM� C� 0

" #
, �16�

where X is a n6m matrix having adjacent eigenvectors as its columns, and lm is
the multiple eigenvalue of multiplicity m. To show that the coef®cient matrix A*
is always non-singular, consider another matrix such as YTA*Y where Y is a
(n�m)6(n�m) non-singular matrix. If it is proved that the determinant of
YTA*Y is non-zero, then the determinant of matrix A* may also be non-zero
and A* is non-singular.
In this paper, the matrix Y is assumed as

Y � CCC 0
0 Im

� �
, �17�

where Im is an identity matrix of order m and CCC is a set of arbitrary independent
vectors containing the adjacent eigenvectors of multiple eigenvalue lm of the

TABLE 1

The procedure of the proposed method

�1� Compute D � CCCT l2m
@M

@p
� lm

@C

@p
� @K
@p

� �
CCC and E � ÿIm:

�2� Solve the eigenvalue problem DT � ET
@LLLm

@p
and normalize so that TTT � Im:

(3) Let the columns of X�CCCT be the new eigenvectors.

�4� Define A� � l2mM� lmC� K �2lmM� C�X
XT�2lmM� C� 0

" #
:

�5� Compute F �
ÿ�2lmM� C�X @LLLm

@p
ÿ l2m

@M

@p
� lm

@C

@p
� @K
@p

� �
X

ÿXT @M

@p
XLLLm ÿ XTMX

@LLLm

@p
ÿ 1

2
XT @C

@p
X

8>><>>:
9>>=>>;:

�6� Compute

@X

@p

0

24 35 � �A��ÿ1F:
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system, as follows

CCC � �c1 c2 . . . cnÿm x1 x2 . . . xm� when X � �x1 x2 . . . xm�, �18�

where c's are arbitrary independent vectors chosen to be independent to the
adjacent eigenvector x's. Since all the columns of the matrix Y are independent
vectors, matrix Y is non-singular and so it is invertible. Pre- and post-
multiplying YT and Y to A* yields

YTA�Y � CCC 0

0 Im

� �T l2mM� lmC� K �2lmM� C�X
XT�2lmM� C� 0

" #
CCC 0

0 Im

� �

� CCCT�l2mM� lmC� K�CCC CCCT�2lmM� C�X
XT�2lmM� C�CCC 0

" #
: �19�

It is obvious that the last m columns and rows of the matrix
CCCT(l2mM� lmC�K)CCC all have zero elements, which are provided by the
eigenvalue problem (l2mM� lmC�K)X� 0, as follows

CCCT�l2mM� lmC� K�CCC � ~A 0
0 0

� �
, �20�

where ~A is a non-zero (nÿm)6(nÿm) submatrix. The submatrix ~A is a non-
singular matrix having order of nÿm and rank of nÿm, since it is given by
eliminating the columns and rows having all zero elements from
CCCT(l2mM� lmC�K)O of order n and rank nÿm. That is, det(~A) 6� 0.
By the normalization condition,

CCCT�2lmM� C�X � ~B
Im

� �
and XT�2lmM� C�CCC � ~B

Im

� �
, �21�

where ~B is generally a non-zero rectangular matrix. Substituting equations (20)
and (21), into equation (19) yields

�� L=10 m w=0.1 m

h=0.1 m

z

yx

z

Figure 1. Cantilever beam with height h as the design parameter. Number of nodes: 21; number
of elements: 20; number of degrees of freedom: 80; Young's modulus: E� 2�1061011; mass
density: p� 7�856103 kg/m3.
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YTA�Y �
~A 0 ~B
0 0 Im

~B
T

Im 0

264
375: �22�

By applying the matrix determinant property of partitioned matrices, the
determinant of YTA*Y can be rewritten as

det�YTA�Y� � det
0 Im
Im 0

� �
det ~Aÿ �0 ~B� 0 Im

Im 0

� �ÿ1
0
~B
T

� � !
�23�

or

det�YTA�Y� � det�~A� 6� 0: �24�
The determinant of A* thus is not equal to zero because det(YTA*Y) 6� 0. The
proof is completed mathematically for the numerical stability of the proposed
algorithm in the case of multiple eigenvalues.

4. NUMERICAL EXAMPLES

To demonstrate the theory of the proposed method and its possibilities in the
case of multiple natural frequencies, two examples are presented. The ®rst
example is the ®nite element model of a cantilever beam as the proportionally
damped system. The second example is a 5-DOF mechanical system as the non-
proportionally damped system.

4.1. CANTILEVER BEAM (PROPORTIONALLY DAMPED SYSTEM)

As an illustrative example in the case of the proportionally damped system
with multiple natural frequencies, the cantilever beam with square section used
in reference [12] is considered. Each member is modelled as a beam element of
which each node has four degrees of freedom (y-translation, z-translation, y-
rotation and z-rotation), as shown in Figure 1. The number of nodes is 21, and
the number of elements 20. Each element has eight degrees of freedom, and the
structure has 80 degrees of freedom. Young's modulus is 2�1061011 N/m2 and
mass density 7�856103 kg/m3. Both the beam height and width are 0�1 m, and
its length 10 m.
Assume that the damping matrix is a linear combination of the stiffness and

mass matrices as

C � aK� bM �25�
where a and b are the Rayleigh coef®cients. The design parameter is the beam
height h.
Some results are shown in Table 2. The lowest 20 eigenvalues and their

derivatives of the cantilever beam are listed in the second and third columns of
Table 2. The ®rst and second eigenvalue conjugate pairs are the same, the third
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and fourth, and so on. One can see that the derivatives of the multiple
eigenvalues are different in that one is close to zero while the other is not. Since
the design parameter is the height of the beam h, when h is varied, the multiple
eigenvalues are split into distinct ones as the cross-section of the beam is no
longer square after changing the height. To illustrate the sensitivity analysis
results, the actual and approximate values of the changed system of Dh/h� 0�01
are represented in the fourth and ®fth columns of Table 2. The next two
columns are the variation of eigenvalues and eigenvectors between initial and
changed ones and the last two are errors of the approximations. The errors are
reasonably smaller than the corresponding variations, and one can say that the
proposed method gives good results for the case of multiple eigenvalues and for
a proportionally damped system.

4.2. PRIMARY AND SECONDARY SYSTEMS EQUIPPED ON THE RIGID SQUARE PLATE

(NON-PROPORTIONALLY DAMPED SYSTEM)

An analytical example to verify the proposed method in the case of the non-
proportionally damped system with multiple eigenvalues, the 5-DOF mass,
spring and damper system shown in Figure 2 is considered. Assume that only
vibrations in the vertical plane are possible.
The components of the mass matrix M of the system mij's are:

m11 � m1, m23 � m2, m33 � m3, m44 � J4, m55 � J5,

and mij � 0 if i 6� j

����
��������

m1

y1

y

y2

y3

c4

c1

c2

k4

x

m3, J4, J5

k2

c6k6c5
zk5

k1

m2c3k3

L

L

4

5

Figure 2. 5-DOF non-proportionally damped system. m1� 200 kg, m2� 500 kg, m3� 1000 kg,
k1� 10 000 N/m, k2� 20 000 N/m, k3� k4� k5� k6� 1000 N/m, c1� 4 Ns/m, c2� 6 Ns/m,
c3� c4� c5� c6� 40 Ns/m.
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The elements of the stiffness matrix kij's are given as:

k11 � k1; k12 � ÿk1; k13 � k14 � k15 � 0;

k22 � k1 � k2; k23 � ÿk2; k24 � k25 � 0;

k33 � k2 � k3 � k4 � k5 � k6; k34 � ÿL=2�k3 ÿ k4 � k5 ÿ k6�;

k35 � ÿL=2�k3 � k4 ÿ k5 ÿ k6�; k44 � �L=2�2�k3 � k4 � k5 � k6�;

k45 � �L=2�2�k3 ÿ k4 ÿ k5 ÿ k6�; k55 � �L=2�2�k3 � k4 � k5 � k6�:
The damping matrix C has an analogous form to the stiffness matrix: e.g.,

c11 � c1; c12 � ÿc1; c13 � c14 � c15 � 0; c22 � c1 � c2, etc:

Some results are summarized in Table 3 which shows the eigenvalues of the
system and their sensitivities when the design parameter is k5 . Note that the
second and third eigenvalue conjugate pairs are multiples respectively. The
derivatives of the multiple eigenvalues are different since the design parameter is
the spring k5 ; when k5 is varied, the multiple eigenvalues are split into distinct
ones since the structural symmetry is broken. The exact and approximated
eigenvalues of the system after changing k5 by Dk5/k5� 0�01 are represented in
the fourth and ®fth columns of the table. The last four columns are variations of
exact eigenpairs and errors of the approximate eigenpairs. Since the sensitivities
of the second and third eigenpairs are equal to zero, the second and third
eigenpairs are not changed. Considering that the errors of the approximate
eigenpairs are relatively smaller than the variations, the approximate eigenvalues
and eigenvectors of the changed system are reasonable. Consequently, one can
say that the proposed method gives good results.
The proposed method is veri®ed through examples. The proposed method can

be applied very well to the proportionally and non-proportionally damped
systems and to the eigenvalue problem with multiple eigenvalues as well as
distinct ones (refer to Part I).

5. CONCLUSIONS

This paper proposes an ef®cient numerical method for calculating vibration
mode shape derivatives of the proportionally and non-proportionally damped
systems with multiple eigenvalues. The method ®nds eigenpair derivatives of the
systems by solving the linear algebraic equation without any numerical
instability. The proposed method is very ef®cient in the case of the multiple
eigenvalue problems since the computer storage and analysis time required are
smaller than those of Dailey's method, since our method does not use second
derivatives of the system matrices while Dailey's method does. The proposed
method may be inserted easily into a commercial FEM code since it ®nds the
exact solution and treats a symmetric matrix. Furthermore, its algorithm is very
simple and numerically stable.
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